
Tik-111.590 Research Seminar on Interactive Digital Media, 2000 Fall

SCALABLE VECTOR GRAPHICS (SVG)

Chengyuan Peng
Department of Computer Science and Engineering

Helsinki University of Technology
pcy@tml.hut.fi

ABSTRACT

A new XML technology, called Scalable Vector Graphics (SVG) will bring the fast and high-
resolution vector graphics that we currently enjoy in the print world to the Web. SVG overcomes the
shortcomings of existing pixel-based web graphics and contains more sophisticated features, such as
scripting, gradients, animation, filter effects, and interactivity. It’ll integrate seamlessly with
traditional Web standards, such as HTML, GIF, and CGI, complement with dynamic and interactive
capabilities to forge the future of Web graphics. This presentation aims at giving an overview of
technical principles defined in W3c without stepping into the details of SVG tags since the special
SVG features are achieved by implementing the principles.

1 INTRODUCTION
Whether you are on the Web to do personal
shopping, information searching, or business-to-
business activities, high-quality graphics are
critical to clear and effective communications.
SVG will move design beyond the bare boxes and
frames of today's web [10]. Complex layouts,
sophisticated typography, and high-resolution
artwork are both possible on the web.

The SVG format is a new XML grammar for
defining scalable vector-based 2D graphics for the
Web and other applications and usable as an
XML Namespace [15]. SVG is a text-only
collection of XML commands, similar to the
PostScript language. This means that SVG files
can be edited in simple text editors and can be
generated easily from server-side tools such as
CGI and Perl [7].

The SVG as an open standard is currently a
working draft at the W3C. Its group members
come from key industry leaders, Adobe Systems,
AOL/Netscape, Apple, Autodesk, Canon, Corel,
CSIRO, Eastman Kodak, Excosoft, Hewlett-
Packard, IBM, ILOG, IntraNet Systems,
Macromedia, Microsoft, OASIS, Opera, Oxford
Brookes University, Quark, Sun Microsystems,
and Xerox [1]. The W3C has issued SVG as a
candidate recommendation [1]. And now SVG is
well on the way to becoming the vector graphics
language of choice for the Web [13].

Two most commonly used graphics formats on
the Web (GIF and JPEG) today are pixel-based.
Pixel graphics lose quality when zooming [13]. In
addition, rendering pixel graphics for the Web
needs extra work. Each pixel must contain all the
information needed to display an image. They're
big, slow, and dumb.

SVG, on the other hand, overcomes the pixel
graphics’ limitations. It is entirely based on XML
language for describing 2D graphics via vector
graphics, text and raster graphics [9]. And
because it's vector-based, SVG graphics have the
same high quality whether they're displayed on
laptops, handhelds, high-end monitors, TVs, or
even printed on paper without the "staircase"
effects you see when printing bitmapped images
[11]. Graphical formats can be defined by CSS. It
is stylable with CSS and can transform with
XSLT [6].

SVG files are much smaller and more
compressible than comparable JPEG or GIF
images [13]. Since SVG graphics take up less
space than existing GIFs and JPEGs, they help
optimize browser’s performance.

In addition to faster download speeds and high-
resolution printing, SVG also has some other nice
features, such as high-performance zooming,
panning inside of graphics without reloading,
animation, filter, kerning, masking, scripting, and

linking [9]. Users can dig deep into an SVG
object to obtain more dynamic information [8].

Since SVG is based on XML and entirely text-
base, it allows search engines to index SVG
graphics and users to search for text within them
[9].

The SVG works with Java technology. The SVG
complements Java’s high-end graphics engine
(i.e. the Java 2D API) [2]. Any parser that can
read XML can also read SVG. Integration of SVG
into existing DOM means that SVG elements can
be controlled and modified by the usual
JavaScript/Java interfaces [2].

Since SVG is based on an emerging open format
developed by W3C and its member companies,
such as Adobe, Microsoft, and Netscape, there
will be no need for the designers and developers
to learn new software or abandon existing tools
and technologies [10]. They can seamlessly
integrate XML-based SVG with HTML, CSS,
JavaScript, CGI, and other Web technologies.
They can continue to use software they already
employ [9]. Thus, interactive and dynamic effects
are possible on both HTML and SVG using the
same set of scripts [10]. Web designers and
developers will not need to learn new software or
abandon existing tools and technologies in order
to incorporate SVG into their designs [10].

2 SPECIAL SVG FEATURES
SVG has all the features of normal graphics, but
its basic primitive is the Graphic Object, not a
point or line [5]. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths
consisting of straight lines and curves), images
and text [5]. Graphical objects can be grouped,
styled, transformed and composed into previously
rendered objects. The feature set includes nested
transformations, clipping paths, alpha masks,
filter effects and template objects.

2.1 Rendering Model
SVG uses a "painters model" for rendering [6].
Paint is applied in successive operations to the
output device such that each operation paints over
some area of the output device. When the area
overlaps a previously painted area, the new paint
partially or completely obscures the old. When
the paint is not completely opaque, the result on
the output device is defined by the mathematical
rules for composing (i.e. simple alpha blending).

SVG supports the following built-in types of paint
which can be used in fill and stroke operations:
Solid color, Gradients (linear and radial), and
Patterns. SVG allows any painting operation to be
filtered.

Elements in an SVG document fragment have an
implicit drawing order. The first elements in the
SVG document fragment getting "painted" first.
Subsequent elements are painted on top of
previously painted elements. SVG document
fragments can be semi-opaque. In many
environments (e.g., Web browsers), the SVG
document fragment has a final compositing step
where the document as a whole is blended
translucently into the background canvas.

Grouping elements have the effect of producing a
temporary separate canvas onto which child
elements are painted. Upon the completion of the
group, the effect is as if the group's canvas is
painted onto the ancestors canvas using the
standard rendering rules for individual graphic
objects.

2.2 Basic data types
The common data types for SVG's properties and
attributes are Angle, color, coordinate, frequency,
integer, length, list of xxx, number, paint,
percentage, time, transform-list, and URI.

2.3 Styling
The advantages of style sheets are presentational
control, flexibility, faster download and improved
maintenance [16]. SVG combines scripting, DOM
and CSS (Dynamic HTML) and is widely used
for animation, interactivity and presentational
effects.

SVG uses styling properties to describe many of
its document parameters. Styling properties define
how the graphics elements in the SVG content are
to be rendered. SVG shares many of its styling
properties with CSS and XSL. Except for any
additional SVG-specific rules, The following
properties are shared between CSS2 and SVG,
i.e., font, text, and other properties for visual
media (most of these properties are also defined
in XSL) [6].

XSLT offers the ability to take a stream of
arbitrary XML content as input, apply potentially
complex transformations, and then generate SVG
content as output. XSLT can be used to transform

XML data extracted from databases into an SVG
graphical representation of that data.

CSS is a widely implemented declarative
language for assigning styling properties to XML
content, including SVG. It represents a
combination of features, simplicity and
compactness that makes it very suitable for many
applications of SVG [6][16].

XSL style sheets define how to transform XML
content into something else, usually other XML.
When XSLT is used in conjunction with SVG,
sometimes SVG content will serve as both input
and output for XSL style sheets. Other times,
XSL style sheets will take non-SVG content as
input and generate SVG content as output [6].

SVG content can also be used as an exchange
format (style sheet language-independent).

2.4 Coordinate systems, Transformations
and units
For all media (text, graphics, etc.), the SVG
canvas describes the space where the SVG
content is rendered. The canvas is infinite for each
dimension of the space, but rendering occurs
relative to a finite rectangular region of the
canvas. This finite rectangular region is called the
SVG viewport. For visual media, the SVG
viewport is the viewing area where the user sees
the SVG content [6].

The size of the SVG viewport is determined by a
negotiation process between the SVG document
fragment and its parent. An initial viewport
coordinate system and an initial user coordinate
system are identical. Both coordinates systems are
established such that the origin matches the origin
of the viewport, and one unit in the initial
coordinate system equals one pixel in the
viewport. The viewport coordinate system is also
called viewport space and the user coordinate
system is also called user space.

At any point in an SVG drawing, a new viewport
can be established in which all contained graphics
are drawn. After establishing a new viewport, a
new viewport coordinate system, a new user
coordinate system, the unit identifiers of the
coordinate, and a new clipping path are also
implicitly established [6].

A new user space (i.e., a new current coordinate
system) can be established at any place within an

SVG document fragment by specifying
transformation matrices, such as rotation,
skewing, scaling, and translation. Establishing
new user spaces via coordinate system
transformations are fundamental operations to 2D
graphics and represent the usual method of
controlling the size, position, rotation and skew of
graphic objects. The transformmations have
effects on all user space coordinates and lengths
on the given element and all of its ancestors.
Transformations can be nested to any level. The
effect of nested transformations is to post-
multiply (i.e., concatenate) the subsequent
transformation matrices onto previously defined
transformations.

The supported length unit identifiers are: em, ex,
px, pt, pc, cm, mm, in, and percentages. All
coordinates and lengths in SVG can be specified
with or without a unit identifier [6].

2.5 Path
Paths represent the geometry of the outline of an
object. Compound paths (i.e., a path with
subpaths are possible to allow effects such as
"donut holes" in objects.

In addition to line path, there are also cubic
Bézier, quadratic Bézier, and elliptical arc path.

2.6 Basic shapes
SVG contains the six basic objects, i.e., rectangle
(rectangle, including optional rounded corners),
circle, ellipse, polyline, polygon, and line [6].
These basic shapes, along with paths, constitute
the graphic shapes of SVG. The most important
element is the path object and it is the most
flexible one. The open or closed line objects and
polygons can be drawn using path element.

The basic shapes can be stroked, filled, and used
as clip paths. Lines may carry the following
attributes: thickness, line end type, vertex
markers, broken line mode, broken line offset, etc.

You can draw anything you want with the <path>
element. When you have your drawing ready, you
can add text to it by using the text element. This
could be useful for buttons, organizational charts,
or maps [5].

2.7 Text
SVG has powerful text capabilities. SVG has the
following text features: font specification, text

orientation and direction, text alignment, and rich
text formatting.

Text can be rendered as a single line or laid out on
a complex path). A block of text can be separated
into several text spans and different properties can
be applied to each of them. We can easily
manipulate the text layout in the direction,
alignment and relative position.

There is no automatic line breaking or word
wrapping in SVG. In order to realizing line
breaking and layout arrangement within a block
of text, you have to use the <tspan> element.

SVG allows for any parameters in generating text
elements, such as font family, font type, size,
position, width, direction, inclination, etc. In order
to properly represent non-Latin or self-made
fonts, SVG allows for external font description
files, or for replacement of missing Unicode
characters by supplementary graphics or symbols.
Entire fonts may also be embedded into an SVG
file [4].

SVG supports for Unicode, Latin, East Asian,
semantic character sets such as English, Spanish,
Japanese, Hebrew and Arabic [6].

2.8 Painting: Filling, Stroking, and Marker
Symbols
Path elements, text elements and basic shapes can
be filled which means painting the interior of the
object and stroked which means painting along
the outline of the object [6].

Some elements, such as path, polyline, polygon,
and line elements can also have marker symbols
drawn at their vertices (cf. 2.11). With SVG, you
can paint (i.e., fill or stroke) with a single color, a
gradient (linear or radial), or a pattern (vector or
image, possibly tiled), and custom paints
available via extensibility (cf. 2.19).

SVG uses the general notion of a paint server
[6]. Gradients and patterns are just specific types
of paint servers. Paint servers are specified using
a URI reference.

The SVG user agent performs color interpolations
and compositing in the sRGB color space or in a
(light energy linear) linearized RGB color space
when rendering gradients, performing color
animations, performing alpha compositing of

graphics elements into the current background, or
performing various filter effects.

2.9 Color
SVG has 16 million colors. Because I uses
reliable color model, SVG prints with the same
colors you see on your display and at full printer
resolution. Filling, lines or texts can take on a
transparency value.

All SVG colors are specified in the sRGB color
space. Additionally, SVG content can specify an
alternate color specification using an ICC
(International Color Consortium) profile. If ICC-
based colors are provided and the SVG user agent
supports ICC color, then the ICC-based color
takes precedence over the sRGB color
specification [6].

The ICC has established a standard, the ICC
Profile, for documenting the color characteristics
of input and output devices. Using these profiles,
it is possible to build a transform and correct
visual data for viewing on different devices.

2.10 Gradients and Patterns
Gradients and Patterns are used for filling and
stroking.

Gradients consist of continuously smooth color
transitions along a vector from one color to
another, possibly followed by additional
transitions along the same vector to other colors.
SVG provides two types of gradients, i.e., linear
gradients and radial gradients [6].

A pattern is used to fill or stroke an object using a
pre-defined graphic object which can be tiled at
fixed intervals in x and y to cover the areas to be
painted [6].

2.11 Clipping, Masking and Compositing
SVG allows any painting operation to be limited
to a sub-region of the output device by clipping
and masking. SVG supports only simple alpha
blending (composing) [6].

Clipping paths uses any combination of path, text
and basic shapes to serve as the outline of a 1-bit
mask, where everything on the "inside" of the
outline is allowed to show through but everything
on the outside is masked out.

Masks are container elements which can contain
graphics elements or other container elements

which define a set of graphics that is to be used as
a semi-transparent mask for compositing
foreground objects into the current background
[6].

One key distinction between a clipping path and a
mask is that clipping paths are hard masks (i.e.,
the silhouette consists of either fully opaque
pixels or fully transparent pixels, with the
possible exception of antialiasing along the edge
of the silhouette) whereas masks consist of an
image where each pixel value indicates the degree
of transparency vs. opacity. In a mask, each pixel
value can range from fully transparent to fully
opaque.

2.12 Filter effects
A filter effect consists of a series of graphics
operations that are applied to a given source
graphic to produce a modified graphical result.
The result of the filter effect is rendered to the
target device instead of the original source
graphic [6].

So far SVG supports sixteen filter primitives:
Blend, ColorMatrix, ComponentTransfer,
Composite, ConvolveMatrix, DiffuseLighting,
DiffuseLighting, DisplacementMap, Flood,
GaussianBlur, Image, Merge, Morphology,
Offset, SpecularLighting, Tile, Turbulence.

A shadow is an example of a filter effect. By
defining various filters, different types of shadow
effects can be created for three types of graphic
objects: text, shapes, and raster images.

Blend composites two objects together using
commonly used imaging software blending
modes. It performs a pixel-wise combination of
two input images [6].

ColorMatrix applies a matrix transformation on
the RGBA color and alpha values of every pixel
on the input graphics [6].

ComponentTransfer performs component-wise
remapping of data for every pixel. It allows
operations like brightness adjustment, contrast
adjustment, color balance or threshold [6].

Composite performs the combination of the two
input images pixel-wise in image space using one
of the Porter-Duff composing operations: over, in,
atop, out, xor. Additionally, a component-wise
arithmetic operation (with the result clamped
between [0..1]) can be applied [6].

ConvolveMatrix applies a matrix convolution
filter effect. A convolution combines pixels in the
input image with neighboring pixels to produce a
resulting image. A wide variety of imaging
operations can be achieved through convolutions,
including blurring, edge detection, sharpening,
embossing and beveling [6].

DiffuseLighting lights an image using the alpha
channel as a bump map. The resulting image is an
RGBA opaque image based on the light color
with alpha = 1.0 everywhere. The lighting
calculation follows the standard diffuse
component of the Phong lighting model. The
resulting image depends on the light color, light
position and surface geometry of the input bump
map. The light map produced by this filter can be
combined with a texture image using the multiply
term of the arithmetic composing method.
Multiple light sources can be simulated by adding
several of these light maps together before
applying it to the texture image [6].

Flood creates an image with infinite extent filled
with the color and opacity values [6].

GaussianBlur performs a Gaussian blur on the
input image [6].

Image refers to a graphic external to this filter
element, which is loaded or rendered into an
RGBA raster and becomes the result of the filter
primitive. This filter can refer to an external
image or can be a reference to another piece of
SVG. It produces an image similar to the built-in
image source except that the graphic comes from
an external source [6].

Merge composites input image layers on top of
each other using the over operator with Input1 on
the bottom and the last specified input, InputN, on
top. Many effects produce a number of
intermediate layers in order to create the final
output image [6].

The canonical implementation of Merge is to
render the entire effect into one RGBA layer, and
then render the resulting layer on the output
device. In certain cases (in particular if the output
device itself is a continuous tone device), and
since merging is associative, it might be a
sufficient approximation to evaluate the effect one
layer at a time and render each layer individually
onto the output device bottom to top.

Morphology performs fattening or thinning of
artwork. It is particularly useful for fattening or
thinning an alpha channel [6].

Offset offsets the input image relative to its
current position in the image space by the
specified vector. This is important for effects like
drop shadows.

SpecularLighting lights a source graphic using
the alpha channel as a bump map. The resulting
image is an RGBA image based on the light color.
The lighting calculation follows the standard
specular component of the Phong lighting model.
The resulting image depends on the light color,
light position and surface geometry of the input
bump map. The result of the lighting calculation
is added. The filter assumes that the viewer is at
infinity in the z direction [6].

Tile creates an image with infinite extent by
replicating the input image in image space [6].

Turbulence creates an image using the Perlin
turbulence function. It allows the synthesis of
artificial textures like clouds or marble. The
resulting image will have maximal size in image
space. It is possible to create bandwidth-limited
noise by synthesizing only one octave [6].

2.13 Interactivity
SVG drawings can be interactive and dynamic.
Moving or clicking the mouse over any scalable
vector graphic generates immediate feedback,
such as highlighting, text tips, and real-time
changes to the surrounding HTML text.
Animations can be triggered either declaratively
(i.e., by embedding SVG animation elements in
SVG content) or via scripting [9].

SVG supports for zoom, pan, scale on any portion
of an SVG image and not see any degradation
without waiting for extra graphic data to
download.

SVG proposes a variety of user events. Three
event categories are specified: mouse events,
keyboard events, and state change events
(concerning display and SVG file loading state)
[6].

Some interactive display environments provide
the ability to modify the appearance of the pointer
(cursor). Three types of cursors are available in

SVG: Standard built-in cursors, Platform-specific
custom cursors, and Platform-independent custom
cursors [6].

2.14 Linking
Because SVG content often represents a picture or
drawing of something, a common need is to link
into a particular view of the document.

XLink and XPointer allow for linking from within
SVG files to other files on the Web. These files
could be for other SVG files, SMIL presentations,
or simple HTML pages.

Hyper links may be used to refer to other files, or
to other elements within an SVG document.

2.15 Scripting
It is possible to specify the scripting language.
Events can cause scripts to execute (cf. 2.13).

2.16 Animation
The Web is a dynamic medium. Thus there is no
doubt that SVG supports for the animation. SVG
content can be animated in the following ways
[6]:

a) Using SVG's animation elements. The various
elements can define motion paths, fade-in or fade-
out effects, and objects that grow, shrink, spin or
change color.

b) Using the SVG DOM. Every attribute and style
sheet setting is accessible to scripting. SVG offers
a set of additional DOM interfaces to support
efficient animation via scripting. Therefore, any
kind of animation can be achieved. The timer
facilities in scripting languages such as
ECMAScript can be used to start up and control
the animations.

c) SVG has been designed to allow future
versions of SMIL to use animated or static SVG
content as media components.

d) It is expected that future versions of SMIL will
be modularized and that components of it could
be used in conjunction with SVG and other XML
grammars to achieve animation effects.

SVG's animation elements were developed in
collaboration with the W3C Synchronized
Multimedia (SYMM) Working Group, developers
of the Synchronized Multimedia Integration
Language (SMIL) 1.0 Specification.

SVG offers interpolation of in-betweens.
Interpolation options are: step-by-step, linear, or
spline. Various parameters may be animated, such
as color value, position, position along a path,
rotation, scale, etc.

2.17 Fonts
One disadvantage of the today’s Web font facility
is that no particular font formats need to be
supported. And so that different implementations
support different Web font formats. Thus it is
difficult for Web site creators to post a single
Web site that is supported by a large percentage
of installed browsers [10].

Reliable delivery of fonts is considered a critical
requirement for SVG. SVG designers will be able
to create SVG graphics with whatever fonts they
use like in the print world even if the viewer
hasn't purchased the fonts being displayed.

SVG utilizes CSS2's WebFont facility as a key
mechanism for reliable delivery of font data to
end users.

The purpose of SVG fonts is to allow for delivery
of glyph outlines in display-only environments.
SVG fonts that accompany Web pages must be
supported only in browsing and viewing
situations. Content creator will need to license the
given font before editing the SVG file.

Because SVG fonts are expressed using SVG
elements and attributes, in some cases the SVG
font will take up more space than the font were
expressed in a different Web font format.

The characteristics and attributes of SVG fonts
correspond closely to the font characteristics and
parameters described in the CSS2 specification.
Unlike standard graphics in SVG, where the
initial coordinate system has the y-axis pointing
downward, the design grid for SVG fonts, along
with the initial coordinate system for the glyphs,
has the y-axis pointing upward for consistency
with accepted industry practice for many popular
font formats.

SVG fonts and their associated glyphs do not
specify bounding box information.

An SVG font can be either embedded within the
same document that uses the font or saved as part
of an external resource.

2.18 Metadata
Metadata is information about a document.
Metadata serves to deposit information on the
document in a structured way. Data concerning
authorship, date of publication, version, title, brief
description, etc. are inserted. Those may be
embedded into an SVG file, just as external code
(e.g. JavaScript).

In the computing industry, there are ongoing
standardization efforts towards metadata with the
goal of promoting industry interoperability and
efficiency. Content creators should track these
developments and include appropriate metadata in
their SVG content which conforms to these
various metadata standards as they emerge.

The W3C Note "Metadata and SVG" [not yet
published] discusses in detail various issues
concerning metadata and SVG. The document
provides a current set of recommendations about
appropriate uses of metadata in conjunction with
SVG. The W3C has ongoing metadata activities
which provide general metadata guidelines. One
of the W3C's metadata activities is the definition
of Resource Description Framework (RDF), a
W3C Recommendation for specifying metadata
[6].

Individual industries or individual content
creators are free to define their own metadata
schema but are encouraged to follow existing
metadata standards and use standard metadata
schema wherever possible to promote interchange
and interoperability. If a particular standard
metadata schema does not meet your needs, then
it is usually better to define an additional
metadata schema in an existing framework such
as RDF and to use custom metadata schema in
combination with standard metadata schema,
rather than totally ignore the standard schema [6].

2.19 Extensibility
Extensibility is one of the most important features
of SVG. Since SVG itself is defined in XML, any
other standard which is equally defined in XML,
such as MathML, XHTML, SMIL, and many
others, can be embedded and accessed in SVG.

SVG allows inclusion of elements from foreign
namespaces anywhere with the SVG content. In
addition, SVG allows inclusion of attributes from
foreign namespaces on any SVG element. SVG's
including foreign namespaces can be used for the
following purposes: Application-specific

information so that authoring applications can
include model-level data in the SVG content to
serve their "roundtripping" purposes (i.e., the
ability to write, then read a file without loss of
higher-level information) and Supplemental data
for extensibility [6].

One goal of SVG is to embed foreign objects. It
provides a mechanism by which other XML
language processors can render into an area
within an SVG drawing, with those renderings
subject to the various transformations and
composing parameters that are currently active at
a given point within the SVG content tree. One
particular example of this is to provide a frame for
XML content styled with CSS or XSL so that
dynamically reflowing text (subject to SVG
transformations and composing) could be inserted
into the middle of some SVG content. Another
example is inserting a MathML expression into an
SVG drawing.

3 CONCLUSIONS
The SVG standard was/is developed and
supported (mainly by their products) by all major
graphics and software companies and
organizations, that are web relevant: Adobe,
Apple, AutoDesk, Bit-Flash, Corel, HP, IBM,
ILOG, Inso, Kodak, Macromedia, Microsoft,
Netscape, Oasis, Open Text, Oxford University,
Quark, RAL, Sun-Microsystems, W3C und Xerox
[6]. As for the future, this circumstance will
guarantee a broad support regarding import and
export filters as well as converter and viewer
development. Since SVG is a very well
documented and open XML standard, one may
easily generate and convert out of one’s own
scripts or programs. It may be expected that SVG
will also be supported by GIS software companies
and that SVG due to its application in web
projects will attain significance as a general
graphics exchange format. Next to Adobe
Illustrator and PDF, SVG is one of the few well-
documented ASCII graphics formats. As
compared to the first two, it decidedly offers even
more possibilities. For the representation of SVG
documents, as for now the client still needs a
plugin (by Adobe), which the user must install. In
future versions of WWW browsers, however,
SVG interpreters will be standard. Integration is
also possible via CSIRO's Java applet [11].

Up to now, any serious attempt concerning
Internet cartography was limited by narrow
technical specifications, which made high quality

cartography rather impossible. Most cartography
at this particular front have been busy creating
emergency workarounds, preventing them from
doing their actual job. For the first time, SVG, the
new Internet vector standard, reduces this strain.
It opens ways for cartography to concentrate on
contents, on interactions, still typical for monitor
cartography. The open character of Internet, along
with the success of the open source model, allows
for new venues and possibilities for cartography,
which are of no small significance for other fields
as well, like data processing and sales/promotion.

Adobe, a big driver in the SVG working group,
has already said that it plans to integrate SVG into
its suite of graphics applications (Illustrator,
Photoshop, and GoLive). So I doubt we'll be hand
coding too many SVG files—one can only enter
so many coordinates. Instead we'll probably be
using updated versions of our current tools to
create SVG images. Adobe also says it is working
on browser plug-ins for Navigator and Explorer to
display SVG files, as well as a micro-viewer for a
range of clients—from handheld devices to
desktop computers [11].

Both Netscape and Microsoft are also
participating in the working group, so there's a
good chance we'll see their spin on displaying
SVG graphics as well [16].

4 REFERENCES
[1] http://www.w3.org/2000/08/svg-
pressrelease.html
[2]
http://www.sun.com/software/xml/developers/svg
/java2d-api/
[3]. Introduction to JSP and SVG
http://www.sun.com/software/xml/developers/svg
/jsp/
[4] SVG Text
http://www.sun.com/software/xml/developers/svg
/text/;$sessionid$BNHA5GIAAAS5HAMTA1FU
45Q
[5] SVG Shapes.
http://www.sun.com/software/xml/developers/svg
/shapes/;$sessionid$BNHA5GIAAAS5HAMTA1
FU45Q
[6] http://www.w3.org/TR/SVG/
[7] http://www.oingo.com/topic/83/83779.html
[8]
http://wdvl.com/Authoring/Languages/XML/SVG
/
[9] Vincent Hardy. Scalable Vector Graphics
(SVG): An Executive Summary.

http://www.w3.org/2000/08/svg-pressrelease.html
http://www.w3.org/2000/08/svg-pressrelease.html
http://www.sun.com/software/xml/developers/svg/java2d-api/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/java2d-api/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/jsp/
http://www.sun.com/software/xml/developers/svg/jsp/
http://www.sun.com/software/xml/developers/svg/text/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/text/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/text/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/shapes/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/shapes/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.sun.com/software/xml/developers/svg/shapes/;$sessionid$BNHA5GIAAAS5HAMTA1FU45Q
http://www.w3.org/TR/SVG/
http://www.oingo.com/topic/83/83779.html
http://wdvl.com/Authoring/Languages/XML/SVG/
http://wdvl.com/Authoring/Languages/XML/SVG/

http://www.sun.com/software/xml/developers/svg
/
[10] Anthony Celeste, The Future of Web Design
http://www.designer.com/focus/articles/web_futur
e/web_future_print.htm
[11]
http://www.adobe.com/svg/overview/overview.ht
ml
[12]
http://wdvl.com/Authoring/Languages/XML/SVG
/DoingIt/
[13]
http://www.webdeveloper.com/design/design_svg
_intro.html
 [14]
http://www.w3.org/Graphics/SVG/Overview.htm
8
[15]
http://www.carto.net/papers/svg/index_e.html
[16] http://tech.irt.org/articles/js176/

http://www.sun.com/software/xml/developers/svg/
http://www.sun.com/software/xml/developers/svg/
http://www.designer.com/focus/articles/web_future/web_future_print.htm
http://www.designer.com/focus/articles/web_future/web_future_print.htm
http://www.adobe.com/svg/overview/overview.html
http://www.adobe.com/svg/overview/overview.html
http://wdvl.com/Authoring/Languages/XML/SVG/DoingIt/
http://wdvl.com/Authoring/Languages/XML/SVG/DoingIt/
http://www.webdeveloper.com/design/design_svg_intro.html
http://www.webdeveloper.com/design/design_svg_intro.html
http://www.w3.org/Graphics/SVG/Overview.htm8
http://www.w3.org/Graphics/SVG/Overview.htm8
http://www.carto.net/papers/svg/index_e.html
http://tech.irt.org/articles/js176/

	SCALABLE VECTOR GRAPHICS (SVG)
	1 INTRODUCTION
	2 SPECIAL SVG FEATURES
	2.14 Linking
	2.15 Scripting
	2.16 Animation
	2.17 Fonts
	2.18 Metadata
	3 CONCLUSIONS
	
	4 REFERENCES

